345 research outputs found

    Altered patterns of cortical activation in ALS patients during attention and cognitive response inhibition tasks

    Get PDF
    Since amyotrophic lateral sclerosis (ALS) can be accompanied by executive dysfunction, it is hypothesised that ALS patients will have impaired performance on tests of cognitive inhibition. We predicted that ALS patients would show patterns of abnormal activation in extramotor regions when performing tests requiring the inhibition of prepotent responses (the Stroop effect) and the inhibition of prior negatively primed responses (the negative priming effect) when compared to healthy controls. Functional magnetic resonance imaging was used to measure activation during a sparse sequence block design paradigm investigating the Stroop and negative priming effects in 14 ALS patients and 8 healthy age- and IQ-matched controls. Behavioural measures of performance were collected. Both groups’ reaction times (RTs) reflected the Stroop effect during scanning. The ALS and control groups did not differ significantly for any of the behavioural measures but did show significant differences in cerebral activation during both tasks. The ALS group showed increased activation predominantly in the left middle temporal gyrus (BA 20/21), left superior temporal gyrus (BA 22) and left anterior cingulate gyrus (BA 32). Neither group’s RT data showed clear evidence of a negative priming effect. However the ALS group showed decreased activation, relative to controls, particularly in the left cingulate gyrus (BA 23/24), left precentral gyrus (BA 4/6) and left medial frontal gyrus (BA 6). Greater cerebral activation in the ALS group accompanying the performance of the Stroop effect and areas of decreased activation during the negative priming comparison suggest altered inhibitory processing in ALS, consistent with other evidence of executive dysfunction in ALS. The current findings require further exploration in a larger study

    Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    Get PDF
    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examinedL-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm-1), L-aspartic acid (938 cm-1), L-cysteine (679 cm-1),L-glutamine (1090 cm−1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for a new heavy charged vector boson WW^\prime decaying to an electron-neutrino pair in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96\unit{TeV}. The data were collected with the CDF II detector and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No significant excess above the standard model expectation is observed and we set upper limits on σB(Weν)\sigma\cdot{\cal B}(W^\prime\to e\nu). Assuming standard model couplings to fermions and the neutrino from the WW^\prime boson decay to be light, we exclude a WW^\prime boson with mass less than 1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore